SSG-2 Fluidless Snow Pillow

Innovative, Field Proven, Precision Measurement of Snow Water Equivalent (SWE)

The Sommer SDI-12 Fluidless Snow Pillow is an innovative, field proven sensor for the measurement of Snow Water Equivalent in even the most remote and challenging locations.

EASY SETUP
Minimal ground preparation and installation

INNOVATIVE DESIGN
Superior weight distribution - no warping or bending

ENVIRONMENTALLY FRIENDLY
No antifreeze required

Made in USA
Aluminum frame & support panels made in the USA

Automatic SWE measurement
Measure up to 3000mm of SWE

Optimized Thermal Flow
for high accuracy during melting process
With over 500 systems installed in 20 countries worldwide, the SSG-2 is becoming the sensor of choice for the measurement of SWE.

SSG-2 Dimensions deliver superior weight distribution vs. shorter frames.

A broad outer frame of aluminum plates minimizes the effects of ice-bridging commonly experienced late in the measurement season, while the single piece, support rail design ensures no warping or bending under heavy snow loads.

The use of lightweight aluminum materials minimizes thermal resistance improving heat flow throughout the device for better emulation of natural conditions. Integration and connection to weather stations or other signal processing systems are kept easy and simple.

The working principle of the SSG-2 is based on the measuring principle of load cells. The sensor consists of seven perforated plates with each plate measuring 31.44” x 47.16”.

The center panel and six surrounding panels allow water to percolate through the sensor. Water percolation minimizes thermal differences between the sensor and surrounding panels and act to buffer the center panel (where SWE is measured) from stress concentration, which may develop along the perimeter of the sensor.

The SSG-2 Fluidless Snow Pillow delivers precise measurements even during periods of rapid snow settlement followed by large snow accumulations. Outputs include SDI-12, 4-20 mA and RS-485.

“A revolution in SWE measurement”